Параметры солнечного элемента

Вольт-амперная характеристика СЭ представляет собой суперпозицию вольт-амперной характеристики диода в темноте и светового тока СЭ.

Под действием света вольт-амперная характеристика смещается вниз в четвертую четверть, в которой находится полезная мощность. Освещение СЭ добавляет световой ток к темновому току и уравнение диода принимает вид:

---1.png

где IL — световой ток.

Влияние света на вольт-амперную характеристику p-n перехода
--1.GIF--2.GIF--3.GIF--4.GIF


Уравнение вольт-амперной характеристики в первой четверти записывается как

--5.png

Слагаемым (-1) в этом уравнении обычно можно пренебречь. Экспоненциальная составляющая обычно >> 1 для всех напряжений, кроме очень маленьких (меньше 100 мВ). При низких напряжениях световой ток IL преобладает над током I0(...), поэтому (-1) можно опустить.

Темновой ток , I0 = 1e-10 A
Световой ток , IL = 0.5 A
Коэффициент идеальности , n = 1

Температура, T = 300 K 

Напряжение, V = 0.5 В 
Ток, I = 0.4753 A 

Далее обсуждаются некоторые важные параметры, используемые для характеристики СЭ. Основными среди них являются ток короткого замыкания ISC, напряжение холостого хода VOC, коэффициент заполнения FF и коэффициент полезного действия. Эти параметры можно рассчитать из вольт-амперной характеристики.

Ток короткого замыкания
Ток короткого замыкания — это ток, протекающий через СЭ, когда напряжение равно нулю (то есть когда СЭ замкнут накоротко). Ток короткого замыкания обычно обозначается как ISC.
Ток короткого замыкания на вольт-амперной характеристике. 

Снимок.GIF

Ток короткого замыкания возникает в результате генерации и разделения сгенерированных светом носителей. В идеальном СЭ при условии умеренных резистивных потерь ток короткого замыкания равен световому току. Поэтому ток короткого замыкания можно считать максимальным током, который способен создать СЭ.

Ток короткого замыкания зависит от ряда параметров, описанных ниже: - Площадь СЭ. Обычно вместо тока короткого замыкания рассматривают плотность тока короткого замыкания (Jsc в мА/см2). Это позволяет не учитывать площадь СЭ.
- Число фотонов (то есть мощность падающего излучения). ISC прямо зависит от интенсивности света, как это было показано в пункте "Влияние интенсивности излучения".
- Спектр падающего излучения. Для большинства измерений проводимых с СЭ используется спектр при условии AM1.5.
Оптические свойства (поглощение и отражение) СЭ. О них говорится в пункте "Оптические потери".
- Вероятность разделения носителей в СЭ, которая зависит главным образом от пассивации поверхности и времени жизни неосновных носителей в базе.

При сравнении однотипных СЭ критическим параметром является диффузионная длина и пассивация поверхности. В СЭ с идеально пассивированной поверхностью и равномерной генерацией ток короткого замыкания можно записать, как

eq053.png

где G — скорость генерации, Ln и Lp диффузионная длина электронов и дырок соответственно. Хотя это уравнение использует некоторые допущения, не выполняющиеся в большинстве реальных СЭ, оно показывает, что ток короткого замыкания сильно зависит от скорости генерации и диффузионной длины.

Максимальная плотность тока солнечных кремниевых элементов при условии АМ 1.5 равна 46 мА/см2. Плотность тока лабораторных СЭ достигает 42 мА/см2, коммерческих — 28 — 35 мА/см2.

Световой ток и ток короткого замыкания (IL или Isc ?)
Световой ток — это ток, сгенерированный светом внутри СЭ. Его значение нужно использовать в уравнении СЭ. При разомкнутой цепи измеряется ток короткого замыкания. Так как об Isc обычно равен IL, эти токи являются взаимозаменяемыми, а в уравнении СЭ Isc записывают вместо IL. В случае очень высокой плотности последовательного сопротивления (> 10 Ом см2) Isc становится меньше IL и использовать его в уравнении СЭ не правильно.

Также предполагается, что IL зависит только от падающего излучения и не зависит от напряжения на СЭ. Однако на самом деле это не так и в некоторых СЭ IL зависит от напряжения.

Напряжение холостого хода
Напряжение холостого хода, Voc, — это максимальное напряжение, создаваемое СЭ, возникающее при нулевом токе. Напряжение холостого хода равно прямому смещению, соответствующему изменению напряжения p-n перехода при появлении светового тока. Напряжение холостого хода на вольт-амперной характеристике показано ниже.

Вольт-амперная характеристика СЭ и напряжение холостого хода.
2.GIF

Voc можно определить, положив в уравнении СЭ ток равным нулю:

3.png

Ток насыщения , I0 = 1e-10 A
Световой ток , IL = 0.5 A
Коэффициент идеальности , n = 1

Температура, T = 300 K
Voc = 0.578 В

Это уравнение показывает, что Voc зависит от тока насыщения СЭ и светового тока. Обычно ISC изменяется незначительно, поэтому основное влияние на Voc оказывает ток насыщения, который может изменятся на порядок. Ток насыщения I0 зависит от рекомбинации в СЭ. Значит напряжение холостого хода характеризует рекомбинацию в устройстве. Напряжение холостого хода монокристаллических СЭ высокого качества достигает 730 мВ при условии АМ1.5, 1 Sun. В коммерческих устройствах оно обычно находится на уровне около 600 мВ.

Voc также можно определить из концентрации носителей:

4.png

где kT/q — тепловое напряжение, NA — концентрация легирующей примеси, Δn — концентрация избыточных носителей, ni — собственная концентрация. Когда Voc определяют через концентрацию носителей, его также называют значащим напряжением.

Концентрация легирующей примеси , NA =  1.5e16 cм-3
Концентрация избыточных носителей, Δn = 1e15 cм-3
Температура, T = 298 K
Собственная концентрация носителей , ni = 8.6e9 cм-3
Voc = 0.667 В

Коэффициент заполнения
Ток короткого замыкания и напряжение холостого хода — это максимальные ток и напряжение, которые можно получить от СЭ. Однако, мощность СЭ в обеих этих точках равна нулю. Коэффициент заполнения, который обычно обозначается «FF», — это параметр, который в сочетании с VOC и ISC определяет максимальную мощность СЭ. FF определяется, как отношение максимальной мощности СЭ к произведению VOC и ISC. Графически FF представляет собой меру квадратичности СЭ и равен максимальной площади прямоугольника, который можно вписать в вольт-амперную кривую. FF показан на следующем изображении.
5.GIF

Зависимость выходного тока (красная линия) и мощности (синяя линия) СЭ от напряжения. Так же показаны точки тока короткого замыкания, напряжения холостого хода, максимальных тока и напряжения. Нажмите на изображение, чтобы увидеть, как изменяется кривая для СЭ с низким FF. Так как FF является мерой квадратичности вольта-амперной кривой, СЭ с более высоким напряжением будет иметь более большой возможный FF. Это следует из того, что закругленная часть кривой занимает меньше места. Максимальный теоретически возможный FF можно определить дифференцируя мощность по напряжению и приравнивая производную к нулю:

6.png

что дает:

7.png

Однако этот метод не дает окончательного уравнения. Уравнение выше связывает VOC и VMP. Чтобы найти FF и IMP нужно записать дополнительные уравнения. Часто используют эмпирическое уравнение для FF:

8.png

где VOC — это значащее VOC.

9.png

Напряжение холостого хода , Voc = 0.6 В
Коэффициент идеальности , n = 1

Температура, T = 300 K
значащее VOC , voc = 23.1884 В
Коэффициент заполнения , FF = 0.8274

Это уравнение показывает, что чем больше напряжение, тем больше теоретический FF. Для СЭ, выполненных по одинаковой технологии, значения VOC обычно отличаются не очень сильно. Например, под действием 1 Sun разница между лабораторными и коммерческими СЭ составляет около 120 мВ, что дает максимальный FF 0.85 и 0.83 соответственно. FF может различаться существенно для СЭ из разных материалов. Например, FF солнечных элементов на основе GaAs может достигать 0.89.

Также уравнение, записанное выше, показывает важность коэффициента идеальности СЭ, называемого n-фактором. Величина коэффициента идеальности характеризует качество p-n перехода и говорит о виде рекомбинации в СЭ. При наличии обычных механизмов рекомбинации, n-фактор равен 1. Однако, в других случаях n может принимать значение 2 и др. Высокое значение n уменьшает не только FF, но и напряжение холостого хода, так как оно свидетельствует о наличие высокой скорости рекомбинации.

На практике FF всегда ниже идеального значения в следствие присутствия паразитных сопротивлений, о которых говорится в пункте "Влияние паразитных сопротивлений". Поэтому FF чаще всего определяют из вольт-амперной характеристики как максимальную мощность деленную на произведение ISC и VOC:

10.png

Напряжение холостого хода , Voc = 0.611 В
Ток короткого замыкания , Isc = 2.75 A
Напряжение в точке максимальной мощности , Vmp = 0.500 В
Ток в точке максимальной мощности , Imp = 2.59 A
Результирующий коэффициент заполнения, FF = 0.7707

Коэффициент полезного действия
КПД является самым распространенным параметром, по которому можно сравнить производительность двух СЭ. КПД определяется как отношение мощности, вырабатываемой СЭ, к мощности падающего солнечного излучения. Кроме собственно производительности СЭ КПД также зависит от спектра и интенсивности падающего солнечного излучения и температуры СЭ. Поэтому для сравнения двух СЭ нужно тщательно выполнять принятые стандартные условия. Наземные СЭ измеряются при АМ1.5 и температуре 25 С. СЭ, предназначенные для использования в космосе, измеряются при АМ0

КПД СЭ определяется, как часть падающей энергии, преобразованной в электричество:

1.png

2.png

где Voc — напряжение холостого хода
Isc — ток короткого замыкания
FF — коэффициент заполнения
η — КПД

Для элемента площадью 10×10 см2 при плотности потока падающего излучения 100 мВт/см2

Voc = 0.611 В
Isc = 3.5 A
FF = 0.7

Pin = 10 Вт
Pmax = 1.1762 Вт
КПД, η = 14.9695 %

PVCDROM Christiana Honsberg и Stuart Bowden

Fatal error: Uncaught exception 'phpmailerException' with message 'SMTP Error: Could not authenticate.' in /home/bitrix/www/bitrix/tools/PHPMailer/class.phpmailer.php:814 Stack trace: #0 /home/bitrix/www/bitrix/tools/PHPMailer/class.phpmailer.php(705): PHPMailer->SmtpConnect() #1 /home/bitrix/www/bitrix/tools/PHPMailer/class.phpmailer.php(576): PHPMailer->SmtpSend('Date: Thu, 28 M...', '???????????????...') #2 /home/bitrix/www/bitrix/php_interface/init.php(79): PHPMailer->Send() #3 /home/bitrix/www/bitrix/modules/main/tools.php(5607): custom_mail('studenov@mail.r...', '=?UTF-8?B?dXN0L...', '???????????????...', 'From: solar@ust...', '') #4 /home/bitrix/www/bitrix/modules/main/classes/general/event.php(407): bxmail('studenov@mail.r...', '=?UTF-8?B?dXN0L...', '???????????????...', 'From: solar@ust...', '') #5 /home/bitrix/www/bitrix/modules/main/classes/mysql/event.php(82): CAllEvent::HandleEvent(Array) #6 /home/bitrix/www/bitrix/modules/main/classes/mysql/event.php(24): CEvent::ExecuteEvents() #7 /home/bitrix/www/bitrix/mo in /home/bitrix/www/bitrix/tools/PHPMailer/class.phpmailer.php on line 814